

Warszawska ENERGIA

- od poznania do EKO-działania
Wyzwania
Świetlika 1
List od Świetlika 2
Gdzie jest energia? 3

1. Wyzwanie Świetlika 4
Scenariusz zajęć dla nauczyciela 5
Wykreślanka - Rodzaje energii 6
Prawda - fałsz 6
Informacje od Świetlika 7
Doświadczenia 8
Wiatraczek z latającą kulką 8
Przekaż energię 9
Wodny młynek10
Loteryjka „W świecie energii" 11
2. Wyzwanie Świetlika 12
Scenariusz zajęć dla nauczyciela 13
Wykreślanka - Instrumenty muzyczne 14
Prawda - fałsz 14
Informacje od Świetlika 15
Doświadczenia 15
Tajemnica gumek recepturek15
Grające pudełko 16
Skacząca żabka 17
3. Wyzwanie Świetlika 18
Scenariusz zajęć dla nauczyciela 19
Wykreślanka 20
Prawda - fałsz 20
Informacje od Świetlika 21
Doświadczenia 22
Baloniki pełne energii 22
Żabki hop, hop! 23
Skaczący pieprz 24
Płyń, tódeczko! 25
4. Wyzwanie Świetlika 26
Scenariusz zajęć dla nauczyciela 27
Wykreślanka - Odnawialne źródła energii 28
Prawda - fałsz 28
Informacje od Świetlika 29
Doświadczenia 29
Co trzyma piłeczkę?29
Spirala termiczna30
Co jest między kartkami?31
Co zgasi świeczkę?31
5. Wyzwanie Świetlika 32

Spis treści

Poradniczek Świetlika 33
Poznajemy rodzaje energii 34
Skąd się bierze energia?. 35
Na tropie energii w mojej okolicy 36
Jak energooszczędnie podróżować po Warszawie? 37
Energooszczędny dom 38
Jak mieszkać energooszczędnie? 39
Żarówka? I wszystko jasne! 40
Energia w moim domu 41
Kupujemy z głową!. 42
Gra „Kto pierwszy wyjdzie z domu?" 43
Dyplom „Strażnika energii" 44

Wyzwania
 Świetlika

Jestem Świetlikiem

 - energii strażnikiem!Nazywam się świetlik świętojan̂ski. Jestem matym, brunatnoszarym owadem - samcem, a wię mam skrzydta i potrafię latać. Gdybym byt samiczka, nie latatbym, a moje ciato bytoby czarnoszare. Mieszkam w ogrodzie, choć cztonkowie mojej licznej rodziny mieszkaja też w parkach i lasach mieszanych. Najważniejszy czas w moim życiu to druga potowa czerwca, w okolicach nocy świętojańskiej. Szukam sobie wtedy żony. A robię to w sposób niespotykany. Dzieki skomplikowanym procesom chemicznym mój organizm wytwarza energié świetlna - światetko, które świeci w specjalnych organach świetlnych na koñcu mojego odwtoka od strony brzucha. Organy te maja ksztatt wtaściwy tylko dla mojego gatunku. Wytwarzam tak zwane zimne światto, czyli takie, które świeci, ale nie rozgrzewa mojego odwtoka. Nie marnuje swojej energii, wtaczam światetko tylko wtedy, kiedy latam, wypatrujac w trawie światetka o takim samym ksztatcie jak moje. Gdy je dostrzege, wiem, że tam na dole w trawie czeka na mnie moja wybranka.

Jestem bardzo dumny z tego, że tak madrze gospodaruje energia - wytwarzam zimne światto i wtaczam je tylko wtedy, gdy jest mi niezbędne. Myśle, że będę dobrym przewodnikiem po świecie energii. Chce, żebyście poznali jej tajemnice i potrafli madrze z niej korzystać.

Wszystkich, którzy zrealizuja moje wyzwania i zdobęda tytut Strażnika Energii, zapraszam do Klubu Świetlika.

Przedstawione propozycje zadań zostały przygotowane z myślą o uatrakcyjnieniu lekcji uczniom klas 1-3 szkoły podstawowej, ale po niewielkich modyfikacjach można je wykonać razem z przedszkolakami, a nawet uczniami klas czwartych, realizując zajęcia metodą projektu.

Podczas realizacji wyzwań Świetlika w II i w III edycji programu uczniowie przesyłali rozwiązania zadań na adres skrzynki mailowej, którą w imieniu Świetlika obsługiwała Ewa Pytlak, autorka programu dla klas 1-3. W nagrodę za poprawnie wykonane zadania uczniowie otrzymywali rysunek Świetlika, który po wydrukowaniu naklejali na zbiorczą planszę z wyzwaniami.

Proponujemy Państwu podjęcie się roli przyjaciela Świetlika i w jego imieniu sprawdzanie wykonanych przez uczniów prac. Nagrody - naklejki ze Świetlikiem - oraz zbiorcza plansza z pięcioma wyzwaniami są dołączone do pakietu. W realizacji poszczególnych zadań z pewnością pomocny będzie Poradniczek Świetlika. Po wykonaniu wszystkich zadań nauczyciel w imieniu Świetlika może nadać każdemu dziecku tytuł Strażnika Energii (dyplom na stronie 44).

Cele

Celami proponowanych zajęć są: pogłębienie wiedzy na temat różnych rodzajów energii, kształcenie postawy badawczej oraz umiejętności rozumowania i wyciągania wniosków.

Proponujemy poniższy plan zajęć, który oczywiście można dowolnie modyfikować w zależności od sytuacji dydaktycznej.

Potrzebne

- Materiały do doświadczeń wymienione w liście od Świetlika.
- Materiały plastyczne potrzebne do wykonania plakatu.

Przebieg zajęć

- Odczytanie dzieciom listu od Świetlika.
- Ustalenie rodzaju energii, którą uczniowie będą badać podczas zajęć.
- Luźne zabawy na rozgrzewkę.
- Wykonanie doświadczeń i zapisanie wyników obserwacji.
- Odczytanie informacji/komentarza naukowego od Świetlika.
- Wykonanie zadań typu „prawda - fałsz" i wykreślanek.
- Klub Wynalazców - praca w zespołach, wymyślanie „urządzeń" wykorzystujących dany rodzaj energii.
- Wykonanie tematycznego plakatu o danym rodzaju energii, poprzedzone zbieraniem informacji, gdzie w codziennym życiu wykorzystywane są właściwości danego rodzaju energii.
- Przygotowanie materiałów do wysyłki na adres przyjaciela Świetlika.
- Przekazanie dzieciom akceptacji i wyrazów zadowolenia Świetlika z wykonania zadań oraz naklejek, które uczniowie nakleją na planszę z wyzwaniami.

Kochani!
Zapraszam Was do wspólnych zabaw z energią i do podjęcia pięciu wyzwań.

Za każde podjęte wyzwanie otrzymacie mój certyfikat.

Listy z kolejnymi wyzwaniami będę przekazywać przez moich przyjaciół. Wiem od nich, że już uczyliście się o energii, więc teraz będziemy ją badać dokładniej i zgłębiać jej tajemnice.

Pierwsze wyzwanie dotyczyć będzie różnych rodzajów energii oraz jej przemian. Czekają na Was trzy zadania.
A więc do dzieła!
Czekam z niecierpliwością na Waszą relację z wykonania zadań i życzę Wam dobrej zabawy z energią!

Wasz Świetlik

(1.

Wykreślanka

Zajrzyjcie do Poradniczka Świetlika lub przypomnijcie sobie, jakie znacie rodzaje energii. Spróbujcie znaleźć ich nazwy w wykreślance.

2.

Prawda - fałsz

Przeczytajcie informację o energii i wykonajcie zadania „prawda - fałsz".

3.

Doświadczenia

Wykonajcie zaproponowane doświadczenia i zapiszcie wnioski. Kartę z wnioskami z doświadczeń prześlijcie do mnie.

4.

Przemiany energii - plakat

Zastanówcie się, gdzie jeszcze można zauważyć przemiany energii. Wspólnie przygotujcie plakat, na którym zamieścicie przykłady przemiany energii oraz uzyskane podczas zajęć informacje. Po zrobieniu plakatu sfotografujcie go i wyślijcie mi zdjęcie. Plakat zatrzymajcie, możecie go powiesić w klasie lub w swoim pokoju.

1.

Cel zajęć

1. Pogłębienie wiedzy na temat energii elektrycznej.
2. Przypomnienie informacji na temat rodzajów energii.
3. Kształcenie postawy badawczej, umiejętności rozumowania i wyciągania wniosków.

2.

- materiały do doświadczeń wskazane przy każdym doświadczeniu,
loteryjka „W świecie energii",
rysunki z rodzajami energii,
- materiały plastyczne do wykonania plakatu.

Przebieg

1. Odczytanie listu od Świetlika, podjęcie decyzji o realizacji jego wyzwań.

Należy przypomnieć postać Świetlika oraz to, dlaczego jest on naszym przewodnikiem po świecie energii.
2. Klasowa gra w loteryjkę: dzielimy dzieci na 4 zespoły - każdy zespół dostaje jedną kartę z rodzajem energii i próbuje jak najszybciej zebrać wszystkie przykłady wykorzystania tej energii.

3. Zgadnij, co to za energia.

Nauczyciel kolejno zadaje zespołom pytania, jaka to energia, przedstawiając jej różne przejawy, np. jazda na rowerze, tarcie jabłka na tarce, praca silnika samochodowego, bieganie, rzucanie piłką, praca pralki, praca lodówki, spływanie łódki z kory w strumyku.

Scenariusz
 zajęć dla nauczyciela

4. Wykonanie wykreślanki - w zespołach lub indywidualnie.
5. Przeczytanie informacji od Świetlika i po jej omówieniu wykonanie zadania „prawda - fałsz".
6. Realizacja doświadczeń umieszczonych w wyzwaniach Świetlika (nauczyciel dzieli klasę na trzy zespoły, każdy z nich otrzymuje wszystkie doświadczenia do wykonania oraz karty do zapisania spostrzeżeń i wniosków). Po wykonaniu doświadczeń i zapisaniu wniosków sprawdzamy je wspólnie.
7. Przygotowanie plakatu o przemianach energii.

1.

Wykreślanka - Rodzaje energii

Znajdź 6 rodzajów energii: CIEPLNA, CHEMICZNA, ELEKTRYCZNA, RUCHU, WIATRU, WODY.

2.

Prawda - fałsz

Przy każdym stwierdzeniu zaznacz, czy jest ono prawdziwe czy fałszywe.
Zakreśl słowo PRAWDA lub FAŁSZ:

2. Ilość energii przy przechodzeniu z jednego rodzaju w drugi nie zmienia się.
3. Gdy jeden rodzaj energii zmienia się w drugi, mogą powstawać straty.

PRAWDA
FAłSZ
4. Zasada zachowania energii mówi o tym, że przy każdej zamianie zwiększa się ilość energii.

PRAWDA
FAłSZ
5. Pierwsza elektrownia wodna powstała w Kanadzie.

PRAWDA
FALSZ

dla dzieci

Energii nie możesz stworzyć ani zniszczyć. Jej podstawową cechą jest zdolność przechodzenia z jednego rodzaju w drugi.

Energia elektryczna maszyny do szycia zamienia się w energię ruchu jej igły. Energia chemiczna baterii w samochodziku zamienia się w energię elektryczną, a następnie w energię ruchu - samochodzik jedzie.

W elektrowniach wodnych woda obraca turbiny - ogromne koła, które napędzają prądnice wytwarzające elektryczność.

dla nauczyciela

Każdemu działaniu towarzyszy energia, jest ona niezbędna do życia. Energia słoneczna ogrzewa Ziemię, powoduje powstawanie wiatrów i prądów morskich, dzięki niej rosną drzewa, częściowo przeznaczane na opał, a przed milionami lat została ona zmagazynowana w paliwach kopalnych, takich jak węgiel, ropa naftowa i gaz ziemny.

Energia pochodzi z różnych źródeł. Najczęściej do jej wytwarzania wykorzystywane są surowce energetyczne, określane jako nieodnawialne źródła energii. Może też pochodzić z nieograniczonych zasobów uzyskiwanych z sif natury, czyli odnawialnych źródeł energii.

Do nieodnawialnych źródeł energii, czyli takich, których zasoby wyczerpią się w niedługim czasie, zaliczamy:

- węgiel kamienny
(według prognoz zapasy na mniej więcej 200 lat),
- węgiel brunatny,
- ropa naftowa (zapasy na mniej niż 50 lat),
- gaz ziemny (zapasy na trochę ponad 50 lat),
- uran.

Warto wiedzieć, że pierwszą elektrownię wodną zbudowano przy wodospadzie Niagara na granicy Stanów Zjednoczonych i Kanady.

Cała ilość energii na początku jest taka sama jak jej ilość po zamianie. Zjawisko to znamy jako zasadę zachowania energii. Niemniej jednak, gdy energia zamienia się z jednego rodzaju w drugi, powstają „straty" części energii. Gdy zapalasz żarówkę, energia elektryczna zamienia się w świetlną, ale wytwarza się także energia cieplna, której

nie potrzebujemy. nie potrzebujemy.

Wykorzystywanie nieodnawialnych źródeł energii wiąże się z licznymi negatywnymi skutkami dla środowiska. Elektrownie węglowe emitują do atmosfery szkodliwe dymy, pyły i gazy. Potrzebne jest miejsce do składowania odpadów powstałych w wyniku spalania węgla. Ogromna emisja dwutlenku węgla do atmosfery potęguje efekt cieplarniany.

Źródła odnawialne są niemal niewyczerpywalne, istnieją w przyrodzie od zawsze. Zaliczamy do nich energię:

- Słońca,
- wiatru,
- wody,
- geotermalną,
- biomasy.

3.

Doświadczenie / Wiatraczek z latającą kulką

Potrzebne

- 2 jednakowe rurki do napojów
- cieniutki sznurek lub gruba nitka (długość taka sama jak długość dwóch rurek)
- kartka papieru formatu A4
- klej, nożyczki, taśma klejąca,
- kawałek plasteliny
- długa pinezka, spinacz biurowy

Zbuduj wiatraczek

1. Z połowy kartki A4 wytnij kwadrat.
2. Złóż ten kwadrat na pół wzdłuż przekątnych, w jedną i w drugą stronę.
3. Natnij każdą linię idącą do środka kwadratu do połowy jej długości.
4. Przyciągnij kolejno rogi kwadratu do środka i przyklej klejem. Po przyklejeniu ostatniego rogu naklej jeszcze na środku kawałek taśmy klejącej, aby lepiej przykleić rogi.
5. Umocuj wiatraczek na plastikowej rurce:

- wepchnij do światła rurki z jednej strony trochę plasteliny,
- dodatkowo oklej tę końcówkę plasteliną,
- przebij środek wiatraczka długą pinezką,
- wetknij pinezkę w światło rurki wypełnione plasteliną,
- unieruchom wiatraczek na rurce, oklejając pinezkę plasteliną od tyłu.

6. W światło jednego końca drugiej rurki wetknij spinacz biurowy.
7. Przeciągnij rurkę z wiatraczkiem przez spinacz zamontowany na drugiej rurce.
8. Zamontuj na pierwszej rurce nitkę z kulką:

- utnij nitkę o długości dwóch rurek,
- ulep niewielką kulkę z plasteliny - wielkości dwóch ziarenek grochu,

- połącz jeden koniec nitki z plastelinową kulka, najlepiej oblep nitkę kulką,
- drugi koniec nitki przyklej taśmą klejącą do rurki z wiatraczkiem.

Przebieg doświadczenia

- Dmuchaj mocno na wiatraczek.
- Zapisz lub narysuj, co się dzieje, gdy dmuchasz na wiatraczek.
\qquad
\qquad
\qquad

Wnioski

Dmuchając na wiatraczek, używasz energii
\qquad gdy kulka \qquad
na rurkę używana była energia
\qquad
Energia
\qquad
zamieniła się w energię

Doświadczenie / Przekaż energię!

Potrzebne

- dwie ręce i nic więcej

Przebieg doświadczenia

- Pocieraj szybko wnętrze jednej dłoni o wnętrze drugiej dłoni przez 10 sekund, tak jakby były zmarznięte. Przyłóż dłonie do uszu.
- Zapisz, co czujesz, gdy przyłożysz dłonie do uszu.
\qquad
\qquad
\qquad

Wnioski

Podczas pocierania jednej dłoni o drugą dłoń wykorzystywana była energia

Po przyłożeniu dłoni do uszu dłonie oddały uszom energię

Energia

zamieniła się w energię

Doświadczenie / Wodny młynek

Potrzebne

- duża plastikowa butelka
- papierowe (ewentualnie plastikowe) rurki
- nożyczki
- pinezki
- gruba nitka lub cienki sznurek
- ołówek
- miska
- konewka z wodą

Przygotuj butelkę

1. Odetnij nożyczkami górną część butelki.
2. Za pomocą pinezki i ołówka w dolnej części butelki, wokół podstawy, zrób 4-6 dziurek.
3. Utnij z plastikowych rurek tyle trzy-czterocentymetrowych kawałków, ile jest otworów w butelce, wepchnij je do dziurek.
4. U góry butelki zrób 3 dziurki, przez każdą z nich przewlecz nitkę i wszystkie trzy nitki zwiąż razem.

Przebieg doświadczenia

- Umieść butelkę nad miską z wodą.
- Zatrzymaj, aby się nie kręciła.
- Wlej do butelki wodę z konewki.
- Zapisz, co się dzieje z butelką.

Wnioski

Podczas nalewania wody do butelki wykorzystywana była energia
gdy butelka zaczęła się

zmieniła się w energię \qquad
Energia
zamieniła się w energię

Loteryjka „W świecie energii"

Potrzebne

- papier A4, nożyczki, flamaster lub kredka

Przygotujcie

- 4 plansze A4. Każdą podzielcie na 6 równych pól. Na każdej napiszcie nazwę rodzaju energii.
- 24 kartoniki wielkości pojedynczego pola na planszy. Na każdym z nich narysujcie lub wyklejcie przykład działania danego rodzaju energii: 6 przykładów do każdej z 4 plansz.

ENERGIA WIATRU - kartoniki do planszy

ENERGIA WODY - kartoniki do planszy

gaszenie
pożaru

Gra gotowa, teraz rozpocznijcie zabawę. Graczom rozdajemy plansze, a kartoniki

Przebieg
 gry

 rozkładamy na stole obrazkami odwrócone do blatu. Gracze po kolei odkrywają kartoniki. Jeśli znajduje się na nich obrazek pasujący do ich planszy, zabierają go i losują dalej, jeśli nie, kartonik odkrywa następny gracz. Grę wygrywa ten gracz, który jako pierwszy zakryje wszystkie 6 pól na swojej planszy.

Kochani!
Myślę, że przyda się Wam trochę energii i zabawy. Podczas tego wyzwania będziecie badać elastyczną energię.

Waszą podstawową pomocą będzie gumka recepturka. A więc do dzieła!

Rozprężam się i sprężam w oczekiwaniu na Wasze prace, wysyłajcie je jak zwykle na umówiony adres.

Wasz Świetlik

1.

Wykreślanka

Gotową wykreślankę wyślijcie do mnie.

Prawda - fałsz

Przeczytajcie „Informacje od Świetlika" i wykonajcie zadanie „prawda - fałsz". Wyniki pracy wyślijcie do mnie.

3.

Doświadczenia

Wykonajcie zaproponowane doświadczenia i zapiszcie swoje obserwacje. Kartę z obserwacjami z doświadczeń wyślijcie do mnie.

4.

Gumkowe zabawy

Pobawcie się w wynalazców i spróbujcie wymyślić co najmniej 5 różnych sposobów wykorzystania „elastycznej energii" gumek recepturek.

5.

Elastyczna energia - plakat

Wspólnie przygotujcie plakat, na którym zamieścicie najlepsze pomysły na wykorzystanie „elastycznej energii" gumek recepturek oraz zaprezentujecie różne sposoby wykorzystana „elastycznej energii" w codziennym życiu. Sfotografujcie gotowy plakat i wyślijcie mi zdjęcie.

1.

Cel zajęć

1. Pogłębienie wiedzy na temat energii kinetycznej.
2. Kształcenie postawy badawczej, umiejętności rozumowania i wyciągania wniosków.

2.

Materiały i pomoce

- materiały do doświadczeń wskazane przy każdym doświadczeniu oraz materiały plastyczne do wykonania plakatu.

3.

Przebieg

1. Odczytanie drugiego listu od Świetlika.
2. Zabawy gumką recepturką - rozciąganie, strzelanie itp.
3. Wykonanie doświadczeń i zapisanie dokonanych obserwacji.
4. Odczytanie informacji od Świetlika.
5. Wykonanie zadania „prawda - fałsz" i wykreślanki „Instrumenty muzyczne".
6. Klub Wynalazców - praca w grupach, wymyślanie „urządzeń" wykorzystujących elastyczną energię.
7. Przygotowanie plakatu „Elastyczna energia" poprzedzone zbieraniem informacji, gdzie w codziennym życiu wykorzystuje się sprężystość i elastyczność.

(1.

Wykreślanka - Instrumenty muzyczne

Znajdź nazwy 4 instrumentów strunowych, które są ukryte w wykreślance.

2.

Prawda - fałsz

Przy każdym stwierdzeniu zaznacz, czy jest ono prawdziwe czy fałszywe.
Zakreśl pole: PRAWDA lub FAtSZ:

Informacje od Świetlika

dla dzieci

Niektóre materiały, jak sprężyna czy gumka recepturka, można rozciągać, a one wracają do pierwotnej długości lub pierwotnego kształtu. Podczas tego rozciągania się i kurczenia uwalnia się energia, którą można wykorzystać do różnych celów. Przykłady tego zjawiska możecie znaleźć w codziennym życiu. Malutkie sprężyny w długopisach pozwalają wysuwać i chować piszący wkład, elastyczne gumki w spodniach od dresu pozwalają łatwiej je zdejmować i zakładać.

Gdy kulka z gumek uderza o podłogę, gumki najpierw naciągają się, a potem kurczą, wracając do swojego rozmiaru.

Energia, która uwalnia się przy tym chwilowym kurczeniu, powoduje, że kulka podskakuje.

Od wieków rozciągliwość materiałów wykorzystywana jest w muzyce. Wszystkie instrumenty strunowe, między innymi pianino, fortepian, harfa, skrzypce, altówka, wiolonczela i kontrabas, działają wykorzystując tę właściwość. Uderzenie w strunę (np. w pianinie) lub szarpnięcie jej (np. w harfie) powoduje drgania i wydobycie się dźwięku. Im grubsza i słabiej naciągnięta struna, tym niższy jest dźwięk.

3.

Doświadczenie / Tajemnica gumek recepturek

Potrzebne

- gumki recepturki, co najmniej 30 sztuk (najlepsze są niezbyt długie i niezbyt rozciągliwe)

Przebieg doświadczenia część A

- Weź 30 gumek recepturek do ręki i z niewielkiej wysokości rzuć na blat stolika.
- Zapisz, co się stało.

Przebieg doświadczenia część B

- Weź 4-5 gumek i zwiń w dłoniach w kulkę.
- Oplataj kulkę kolejnymi gumkami tak, aby powstała piłeczka.
- Rzuć piłeczkę z niewielkiej odległości na blat.
- Zapisz, co się stało.

Doświadczenie / Grające pudełko

Potrzebne

- prostokątny plastikowy pojemnik po lodach lub margarynie
- gumki recepturki
- nożyczki

Przebieg doświadczenia część A

- Nałóż na pudełko gumkę.
- Jedną ręką trzymaj pudełko, drugą szarpnij palcem gumkę.
- Zapisz, co słyszysz.
\qquad
\qquad
\qquad

Przygotuj pudełko

1. W wieczku lub w denku pudełka wytnij nożyczkami prostokątny otwór.

Przebieg doświadczenia część B

- Nałóż na pudełko dwie takie same gumki.
- Jedną gumkę napnij mocniej. Szarpnij palcem najpierw jedną, a potem drugą gumkę.
- Zapisz, jaka jest różnica w uzyskanym dźwięku.
\qquad
\qquad
\qquad

Doświadczenie / Skacząca żabka

Potrzebne

- 2 gumki recepturki
- 2 kubeczki papierowe lub styropianowe
- klej, nożyczki, kredki
- szablon żabki

Przygotuj kubeczki z żabką

1. W jednym kubeczku zrób 4 dziurki.
2. Przewlecz gumkę przez dwa otwory leżące naprzeciwko siebie, zawiąż supełki, nie naciągaj gumki do pełnego naprężenia, to samo zrób z drugą gumką.
3. Pokoloruj żabkę z szablonu i ją wytnij.
4. Naklej żabkę na bok tego kubeczka.

Przebieg doświadczenia

- Postaw pusty kubeczek do góry dnem.
- Nałóż na niego kubeczek z żabką i lekko naciśnij.
- Zapisz, co się dzieje.

- Napisz, co się dzieje, gdy naciskasz mocniej, a co, gdy naciskasz słabiej.

Kochani!
Dziękuję Wam za wspólne zabawy z energią i mam nadzieję, że będziecie zainteresowani naszą dalszą współpracą.

Zapraszam więc do podejmowania kolejnych wyzwań.

Tym razem będziemy badać dokładniej energię elektryczną i zgłębiać jej tajemnice.

Przed Wami 4 zadania.
Już się nie mogę doczekać Waszych prac, piszcie do mnie na umówiony adres.

Wasz Świetlik

1.

Wykreślanka

Zróbcie wykreślankę. Przyślijcie mi Wasze rozwiązania.

2.

Prawda - fałsz

Zapoznajcie się z informacjami od Świetlika na temat elektryczności i wykonajcie zadanie „prawda - fałsz". Przyślijcie mi Wasze rozwiązania.

Doświadczenia

Przeprowadźcie zaproponowane przeze mnie doświadczenia. Możecie je wykonać samodzielnie, w parach lub całą klasą. Po ich wykonaniu zapiszcie wyniki, a po zapoznaniu się z krótką informacją na temat elektryczności zapiszcie swoje wnioski, czyli dlaczego tak się stało.

Plakat o energii elektrycznej

Wspólnie przygotujcie plakat, na którym zamieścicie uzyskane podczas zajęć informacje o energii elektrycznej oraz o jej racjonalnym wykorzystaniu w domu. Jeśli nie wszystko pamiętacie, sięgnijcie do Poradniczka Świetlika. Sfotografujcie gotowy plakat i wyślijcie mi zdjęcie.

1.

Cel zajęć

1. Pogłębienie wiedzy na temat energii elektrycznej.
2. Utrwalenie informacji na temat racjonalnego gospodarowania energią w domu.
3. Kształcenie postawy badawczej, umiejętności rozumowania i wyciągania wniosków.

2.

Materiały i pomoce

Potrzebne: plastikowe rurki, wełniane szmatki.

3.

Przebieg

Odczytanie listu od Świetlika.
Realizacja doświadczeń umieszczonych w kolejnym wyzwaniu Świetlika:

Klasę dzielimy na zespoły. Każdy zespół wykonuje jedno z doświadczeń, zapisuje swoje spostrzeżenia, a następnie prezentuje je całej klasie.

Jak to się dzieje? - nauczyciel czyta dzieciom informację od Świetlika. Zadaje pytania sprawdzające zrozumienie tematu:

- Jak nazywano bursztyn w starożytnej Grecji?
- Kto po raz pierwszy zauważył, że do potartego o ubranie bursztynu przyczepia się źdźbło trawy?
- Kto wymyślił nazwę - elektryczność?
- Jakie mogą być ładunki?
- Które ładunki się przyciągają? A które się odpychają?
- Czy potencjał zerowy przedmiotu jest wtedy, gdy ma on tyle samo ładunków dodatnich co ujemnych?

Scenariusz
 zajęć dla nauczyciela

Zabawa - ruch ładunków

Każde dziecko przypina sobie karteczkę z ładunkiem „minus" lub „plus". Dzieci poruszają się swobodnie po sali. Na sygnał nauczyciela zatrzymują się i stają twarzą w twarz z dzieckiem stojącym najbliżej. Po sprawdzeniu, jakimi są ładunkami, dzieci przytulają się do siebie albo odsuwają od siebie na dwa kroki.
Wykonanie zadań Świetlika - „prawda - fałsz" oraz wykreślanki.

- „Poranek u Niedbalskich" - nauczyciel czyta dzieciom opowiadanie. Następnie pyta, dlaczego Świetlik krzyczał nad głową pani Niedbalskiej: „Czerwony alarm!". Przy ponownym czytaniu nauczyciel prosi dzieci, aby w sytuacjach, w których marnowana jest energia elektryczna, przerywały czytanie. Mogą też wyjaśnić, dlaczego krzyczały.
Wykonanie plakatu o energii elektrycznej na temat tego, jak oszczędnie korzystać z energii elektrycznej w domu.

1.
 Wykreślanka

Znajdź i wykreśl słowa: ELEKTRON, TALES, GILBERT.

2.

Prawda - fałsz

Przy każdym stwierdzeniu zaznacz, czy jest ono prawdziwe czy fałszywe.
Zakreśl słowo PRAWDA lub FAtSZ:

1. Ładunki o takim samym potencjale przyciągają się.
2. Tales z Miletu pocierał bursztyn o ubranie i zauważył, PRAWDA FALSZ że tak potarty bursztyn przyciąga suche źdźbła trawy.
3. Słowo elektron oznacza po grecku ubranie.

PRAWDA
4. Tales zaobserwowane przez siebie zjawisko nazwał elektrycznością.

PRAWDA
FAtSZ
5. Dwa ładunki - jeden ujemny, a drugi dodatni - przyciągają się.

PRAWDA
FALSZ

Informacje od Świetlika

dla dzieci

Jak to się dzieje? - wyjaśnienie

Zwykle przedmioty mają tyle samo ładunków ujemnych i dodatnich, istnieje wówczas równowaga zwana potencjałem zerowym. Kiedy pociera się niektóre przedmioty jeden o drugi, zaburza się tę równowagę i ona znika. Plastikowa rurka pocierana o wełnę otrzymuje ładunek ujemny, w związku z tym przeciąga ładunki dodatnie z przedmiotów o potencjale zerowym. Szklana rurka pocierana przez jedwab otrzymuje ładunek dodatni i przyciąga ładunki ujemne z przedmiotów o potencjale zerowym.

Co będzie, gdy przytkniemy do siebie ładunki o różnych potencjałach? Dwa ładunki o tym samym potencjale, na przykład ujemnym, będą się odpychać. Ładunki o różnych potencjałach będą się przyciągać.

Czyli:

Skąd pochodzi nazwa „elektryczność"?
Istnienie elektryczności, tzw. elektryczności statycznej, stwierdził około 580 r. p.n.e. Tales z Miletu. Zauważył, że pocierany o ubranie bursztyn (po grecku: elektron) przyciąga suche źdźbła trawy, ale dopiero w końcu XVI wieku angielski lekarz William Gilbert nadał temu zjawisku nazwę „elektryczność".
pani Niedbalska zerknęła na ekran jego komputera i pomyślała, że musi z nim porozmawiać na temat siedzenia od rana na Facebooku. Po czym szybkim ruchem kopnęła przewód od ładowarki jego telefonu. Chłopiec ładował go wieczorem, rano zostawił wtyczkę w gniazdku, a wziął tylko telefon. Włączyła światło w garderobie i odnalazła sukienkę do pracy. Zerknęła na zegarek i szybko pomknęła do łazienki. Tam zebrała ubrania z podłogi i kilka z nich wrzuciła do pralki. Bęben wypełniony był w połowie, a pralka nastawiona na temperaturę 60 stopni. Po 5 minutach ubrana i przygotowana do wyjścia pani Niedbalska zbiegała do kuchni, powtórnie włączyła czajnik, bo woda już trochę wystygła. Zaparzyła herbatę, zjadła jogurt i jeszcze raz zerkając na zegarek, powiedziała: „Ufff... zrobiłam wszystko i się nie spóźnię". Rzuciła jeszcze okiem na pokój, który pożegnał ją czerwonymi diodami dwóch przedłużaczy. Nad jej głową Świetlik, szarpiąc czułki ze zdenerwowania, krzyczał: „Czerwony alarm, czerwony alarm! Nie wychodź!!!".

Doświadczenie / Baloniki pełne energii

Potrzebne

- 2 baloniki, cienki sznurek o długości ok. 30 cm
- wieszak, łyżka do butów lub rurka z twardego plastiku (polipropylen - PP lub polichlorek winylu - PVC)
- wetniana szmatka
- kij od szczotki, dwa krzesła z prostym oparciem

Przygotuj zawieszkę

1. Nadmuchaj kolejno baloniki, końce sznurka wykorzystaj do zawiązania wylotów obu baloników.
2. Ułóż kij na oparciu krzeseł.

Przebieg doświadczenia

- Zawieś sznurek z balonikami na kiju tak, aby baloniki zwisały równo po obu stronach kija.

Zapisz, jak zachowują się baloniki.

Potrzyj bardzo mocno wieszak, łyżkę do butów albo rurkę o wełnianą szmatkę, szybko przybliż do baloników. Nie dotykając jednak żadnego z nich.

Zapisz, jak zachowują się baloniki.
\qquad
\qquad

Uwaga!

Jeśli baloniki nie zmieniają położenia po przysunięciu do nich jednego z plastikowych przedmiotów, potartego energicznie wełnianą szmatką, należy przetrzeć tą szmatką oba

baloniki, szczególnie z tej strony, gdzie się stykają, i dopiero wtedy przybliżyć przedmiot uprzednio ponownie przetarty kilkanaście razy wełnianą szmatką.

Doświadczenie / Żabki hop, hop!

Potrzebne

- plastikowa rurka do napojów
- żabki wycięte według szablonu
- wełniana szmatka (rękawiczka, skarpetka, sweterek)

Pamiętaj! Musi to być prawdziwa wełna, np. owcza. W przeciwnym razie doświadczenie się nie uda.

Przebieg doświadczenia część A

- Wytnij i pokoloruj żabki.
- Przytknij rurkę do żabek - zapisz, co się dzieje.
\qquad
\qquad
\qquad

Doświadczenie / Skaczący pieprz

Potrzebne

- plastikowa łyżka
- płaski talerzyk
- sól (płaska łyżka)
- czarny pieprz, drobno zmielony (łyżeczka)
- wełniana szmatka (rękawiczka, skarpetka, szalik)

Przygotuj

1. Na talerzyk wysyp sól i pieprz, wymieszaj.
2. Plastikową łyżkę mocno potrzyj wełnianą szmatką.

Przebieg doświadczenia

- Powoli zbliż łyżkę nad mieszaninę na talerzyku i obserwuj, co się dzieje z pieprzem.
- Zapisz wyniki obserwacji. Uzupełnij wniosek:

Plastikowa łyżka naładowała się elektrycznie przez

0 \qquad
Ładunki elektryczne przyciągnęły
ponieważ jego ziarenka były
od soli.

Doświadczenie / Płyń, tódeczko!

Potrzebne

- połowa kartki A4
- miska z wodą
- plastikowa rurka
- wełniana szmatka (rękawiczka, skarpetka, sweterek)

Pamiętaj! Musi to być prawdziwa wełna, np. owcza. W przeciwnym razie doświadczenie się nie uda.

Przygotuj tódkę

Wykonaj papierową tódkę według instrukcji.

Przebieg doświadczenia

- Włóż tódkę do miski z wodą.
- Umieść ok. 2 cm przed jej dziobem rurkę. Poruszaj wolno rurką w różnych kierunkach.
- Zapisz, co się dzieje.
\qquad
\qquad
\qquad
\qquad
\qquad
- Rurkę potrzyj kilkanaście razy wełnianą szmatką.
- Umieść rurkę przed dziobem łódki i poruszaj nią w różnych kierunkach.

Zapisz, co się dzieje.
\qquad
\qquad
\qquad

Kochani!
Zapraszam Was do badania tajemnic energii zaklętej w ruchu powietrza.

A więc do dzieła!
Czekam na Wasze prace, wysyłajcie je jak zwykle na umówiony adres.

Wasz Świetlik

1.

Wykreślanka

Wykonajcie wykreślankę i efekty pracy wyślijcie do mnie.

2.

Prawda - fałsz

Przeczytajcie „Informacje od Świetlika", a następnie wykonajcie zadanie „prawda - fałsz". Wyniki pracy wyślijcie do mnie.

3.

Doświadczenia

Wykonajcie zaproponowane doświadczenia, zapiszcie swoje obserwacje i wyślijcie je do mnie.

4.
 „Odnawialne źródła energii" - plakat

Przygotujcie plakat, który będzie przedstawiał wykorzystanie odnawialnych źródeł energii. Jeśli nie pamiętacie wszystkich źródeł i sposobów ich wykorzystania, zajrzyjcie do Poradniczka Świetlika. Po zrobieniu plakatu sfotografujcie go i wyślijcie mi zdjęcie.

1.

Cel zajęć

- Pogłębienie wiedzy na temat zjawisk fizycznych.

Kształcenie postawy badawczej, umiejętności rozumowania i wyciągania wniosków.

- Utrwalenie informacji na temat odnawialnych źródeł energii.

2

Materiały i pomoce

- Materiały do doświadczeń wskazane przy każdym doświadczeniu oraz materiały plastyczne do wykonania plakatu.

3.

Przebieg

- Odczytanie listu od Świetlika.
- Wykonanie doświadczeń i zapisanie poczynionych obserwacji.
- Odczytanie informacji od Świetlika.
- Wykonanie zadania „prawda - fałsz" i wykreślanki „Odnawialne źródła energii".
- Przygotowanie plakatu „Odnawialne źródła energii", poprzedzone wykonaniem zadania ze strony 35 (Poradniczek Świetlika).

1.

Wykreślanka - Odnawialne źródła energii

Znajdź nazwy czterech odnawialnych źródeł energii.
Słowa mogą być ułożone pionowo, poziomo i na skos.

2.

Prawda - fałsz

Przy każdym stwierdzeniu zaznacz, czy jest ono prawdziwe czy fałszywe.
Zakreśl słowo PRAWDA lub FAtSZ:

Informacje od Świetlika

Energia wiatru, jedno z odnawialnych źródeł ener-
gii, jest od dawna wykorzystywana przez ludzi.
Już starożytni odkryli, że siłę wiatru można wyko-
rzystać do żeglowania. Nie do przecenienia była
jej rola przy mieleniu ziarna na mąkę w wiatra-
Podróżując po Polsce i Europie, możesz zaobser-
wować ogromne farmy wiatrowe, które zamieniają

Doświadczenie / Spirala termiczna

Potrzebne

- rysunek spirali termicznej
- nitka, nożyczki, igła lub szpilka
- miska z gorącą wodą

Przygotuj

1. Pokoloruj spiralę w wężowe wzory i przetnij wzdłuż linii.
2. W zaznaczonym kropką miejscu zrób dziurkę. Przewlecz przez nią około półmetrową nitkę zakończoną supełkiem.

Przebieg doświadczenia

- Tak przygotowaną spiralę umieść nad miską z gorącą wodą lub nad ciepłym kaloryferem.
- Rozgrzane powietrze, unosząc się ku górze, porusza spiralę, która zaczyna się kręcić.

Doświadczenie / Co jest między kartkami?

Potrzebne

- 2 kartki wielkości pocztówki i zdrowe płuca

Przebieg doświadczenia

- Weź dwie kartki, trzymaj każdą w jednej ręce kciukiem i palcem wskazującym. Zbliż kartki do siebie na odległość centymetra.
- Zastanów się, a następnie zapisz, co się stanie, gdy dmuchniesz od góry między dwie kartki.

Doświadczenie / Co zgasi świeczkę?

Potrzebne

- świeczka typu tea light lub mała kulka zrobiona z papieru lub folii aluminiowej, butelka plastikowa po wodzie, torebka foliowa, gumka recepturka, nożyczki, zapałki

Przygotuj

1. Przetnij nożyczkami na pół plastikową butelkę.
2. Odrzuć część z dnem.
3. Na odcięty koniec butelki naciągnij kawałek folii i umocuj ją gumką.

Przebieg doświadczenia część A

- Zapal świeczkę, połóż na blacie kulkę.
- Spróbuj zgasić świeczkę, ale na nią nie dmuchaj. Spróbuj przesunąć kulkę, ale jej nie dotykaj.
- Zapisz, jeśli Ci się udało, swoje sposoby na zgaszenie świeczki lub przesunięcie kulki.

Przebieg doświadczenia część B

- Połóż butelkę około 10 cm od palącej się świeczki lub od kulki, otworem w kierunku świeczki lub kulki.
- Uderzaj w naciągniętą folię.

Zapisz, co się stało.

- Napisz wyjaśnienie:

Dlaczego płomień świeczki drga (świeczka gaśnie), a kulka się przesuwa? Czy zaangażowana jest tu jakaś energia?

- Sprawdź swoją hipotezę - dmuchnij od góry w powstałą szczelinę między kartkami.
- Zapisz, co się dzieje.
\qquad

Kochani!
To już ostatnie wyzwanie! Chyba najważniejsze.
Wierzę, że dowiedzieliście się już bardzo dużo o energii, i dlatego tym razem to Wy przygotujecie dla mnie doświadczenia i zadania z nią związane. Najciekawsze opublikuję na stronie internetowej programu „Warszawska Energia - od poznania do EKO-działania".

Mam nadzieję, że świetnie sobie poradzicie. Czekam na Wasze prace, wysyłajcie jak zwykle na umówiony adres.

Życzę Wam wielu sukcesów i miłej zabawy

Wasz Świetlik

1.

Wykreślanka

Przygotujcie wykreślankę. Rezultaty Waszej pracy wyślijcie do mnie.

2.
 Prawda - fałsz

Przygotujcie zadanie „prawda - fałsz" dotyczące energii. Rezultaty Waszej pracy wyślijcie do mnie.

Doświadczenia
Przygotujcie i przeprowadźcie doświadczenie związane z energią inne niż te, które ja Wam proponowałem. Przyślijcie mi jego opis lub instrukcję rysunkową (zdjęciową).

4.

„Jaka jest energia?" - plakat

Przygotujcie plakat, na którym zamieścicie najważniejsze informacje o energii, które zapamiętaliście. Po zrobieniu plakatu sfotografujcie go i wyślijcie mi zdjęcie. Plakat pokażcie w klasowej gazetce. Przeczytajcie wszystkie informacje z plakatu i ułóżcie na ich podstawie 10 pytań o energii. Zapiszcie je i wyślijcie do mnie.

Zadanie specjalne Świetlika

W drodze ze szkoły do domu obserwuj dokładnie, co się dzieje. Opisz lub narysuj zauważone przykłady rodzajów energii.

Jaka to energia? Dopasuj nazwę do obrazka.

energia elektryczna

energia ruchu

energia ciepła

energia wiatru

energia wody

Zadanie specjalne Świetlika

Napisz, jakie rodzaje energii wykorzystuje się w Twoim domu i do czego?

Przyporządkuj odpowiednio odnawialne i nieodnawialne źródła energii.

Skąd się bierze energia?

Zadanie specjalne Świetlika

Zostań detektywem energii - zlokalizuj w swojej
Na tropie energii w mojej okolicy najbliższej okolicy źródło energii odnawialnej.

Miejsce obserwacji
\qquad

Narysuj przykłady różnych rodzajów energii zaobserwowane w Twojej okolicy.

Energia: \qquad Energia: \qquad
\square
\square

Wniosek: w mojej najbliższej okolicy wykorzystywana jest energia

Zadanie specjalne Świetlika

Sprawdź, czy Twój rower jest sprawny i dobrze wyposażony.

Narysuj prawidłowo ubranego rowerzystę.

Dorysuj elementy, jakie powinien mieć każdy rower.

Zadanie specjalne Świetlika

Sprawdź, czy okna w Twoim domu są szczelne. Przyłóż rękę poniżej framugi. Jeśli nie czujesz podmuchu powietrza z zewnątrz, masz dowód, że są szczelne.

Jak budować energooszczędnie? Wskazówki:
1.

2
3.
4.

5

Aby zapewnić cyrkulację ciepłego powietrza i ogrzać pomieszczenie w najlepszy sposób, nie zastawiaj grzejników meblami, nie zasłaniaj ich zasłonami ani firankami.

Zawieś w oknach krótkie firanki i zasłony lub załóż rolety.

Termostaty możesz ustawić na temperatury najlepsze dla poszczególnych pomieszczeń, tj. w łazience $22-24^{\circ} \mathrm{C}$, w pokojach dziennych $20-22^{\circ} \mathrm{C}$, w kuchni i sypialni $18-20^{\circ} \mathrm{C}$, na korytarzu $16-18^{\circ} \mathrm{C}$.

Zbyt wysoka temperatura w pomieszczeniach, w których przebywamy, wysusza nadmiernie powietrze.

kaloryfery. Odsłoń

Wietrzenie powinno być krótkie, kilkuminutowe i intensywne, przy zakręconych zaworach grzejnikowych.

Długotrwałe wietrzenie lub trwale uchylone okna prowadzą do niepotrzebnej ucieczki ciepła i podnoszą koszty ogrzewania.

Jak mieszkać

 energooszczędnie?Z rozsypanki wyrazowej na dachach domów ułóż zdania - wskazówki Świetlika.

\qquad
\qquad
\qquad
2

Pokoloruj takim samym kolorem dach ze wskazówką oraz bryłę budynku z wyjaśnieniem tej wskazówki.

Zadanie specjalne Świetlika

Zbadaj, jakie żarówki używane są w Twoim domu. Sprawdź, czy są one umieszczone we właściwych miejscach.

Połącz nazwę żarówki z ilustracją.
żarówka enegooszczędna

żarówka led

żarówka żarowa

Plątaninka - połącz odpowiednie żarówki z informacjami.
Użyj koloru zielonego do żarówki energooszczędnej
i koloru czerwonego do żarówki żarowej.

Od 2012 roku zaprzestano produkcji żarówek tego typu.

Bardzo szybko się zapalam.
Podczas świecenia bardzo się rozgrzewam.

Zużywam 5 razy mniej energii i świecę 10 razy dłużej niż tradycyjna żarówka.

Trzeba mnie wrzucić do specjalnego pojemnika na odpady niebezpieczne.

Można wrzucić mnie do zwykłego kosza na śmieci.

Zapalam się wolno. Nie rozgrzewam się mocno, całą energię wykorzystuję na świecenie.

Zadanie specjalne Świetlika

Sprawdź, czy Twoja lodówka jest szczelna.
Włóż kartkę papieru między drzwi a brzeg lodówki, następnie ją zamknij. Jeśli kartka tkwi w tym samym miejscu, oznacza to, że lodówka jest szczelna, jeśli wypada lub zsuwa się, lodówka nie jest szczelna i trzeba zmienić uszczelki.

Energia w moim domu

Narysuj wybrane urządzenie domowe zasilane energią elektryczną.

Przygotuj rady dotyczące jego użytkowania.

Przyjrzyj się etykiecie energetycznej. Odpowiedz na pytania.

1. Na jaki sprzęt naklejono tę etykietę?

\qquad
2. Czy to urządzenie jest energooszczędne?
\qquad
3. lle energii (kWh - kilowatów) rocznie zużywa?
\qquad
4. Czy jest głośniejsze, jeśli pracuje wypełnione do połowy, czy jeśli jest wypełnione w całości?
\qquad
\qquad
5. Czego jeszcze dowiedziałeś się o tym urządzeniu z tej etykiety?
\qquad

\qquad

Przygotuj:

- 10 żółtych kartek A4 - z różnymi stwierdzeniami - spis poniżej.
- Kartkę START z napisem/rysunkiem ŁÓŻKO
- kartkę META z napisem/rysunkiem DRZWI
- dowolną liczbę kartek A4 z makulatury, które będą zwykłymi polami w grze
- kostkę do gry, pionki - mogą to być kręgle

Opis gry

- Na podłodze w sali lub na trawie rozkładamy pola gry, dowolnie mieszając kartki z napisami i kartki z makulatury.
- Klasę dzielimy na zespoły, każdy zespół dostaje swój pionek - kręgiel. Zadaniem zespołu jest „wyjść z domu", czyli przekroczyć metę.
- Jeśli gracz/zespół stanie na polu żółtym, ma za zadanie przeczytać stwierdzenie i powiedzieć, czy jest ono prawdziwe lub czy pokazuje dobry sposób gospodarowania energią elektryczną w domu.
- Jeśli gracz/zespół odpowie prawidłowo, ma prawo do przesunięcia się o dwa pola do przodu, a jeśli się pomyli, to cofa się o dwa pola.
- Gracze poruszają się po polach, rzucając kostką. Zaczyna ten, kto wyrzuci najmniejszą liczbę oczek, a wygrywa ten, kto jako pierwszy dotrze do mety.

Stwierdzenia na żółte karty

2. Do lodówki wkładam dobrze wystudzone produkty. ...
3. Wypetniam cały bęben pralki rzeczami do prania. ..dobrze
4. Włączam program EKO do zmywania. ...dobrze
5. Potrzebuję̨ 2 czystych kubków więc szybko wkładam je do zmywarki i włączam ją....źle
6. Muszę często ładować swój telefon, więc na stałe włożę ładowarkę do kontaktu za biurkiem. ..zle

9. Nie wyłączam komputera, kiedy wychodzę z domu. ...źle
10. Zawsze upewniam się, czy drzwi lodówki są dobrze zamknięte. ..

Dyplom

dla
za zgłębianie tajemnic energii oraz uzyskanie tytułu

> STRAŻNIKA ENERGII

Zdjęcia: Michał Kłosiński, Tomasz Truszkowski

